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DETERMINATION OF THE ANGULAR POSITION AND ANGULAR VELO-

CITIES AT THE END OF THE PHASE OF ACTIVE VARIATION

IN ANGULAR VELOCITY

V. S. Novoselov and K. K. Lavrinovich

1. Statement of the Problem /177

Let us suppose that in an-artificial satellite is placed a

device which is capable at a given moment of turning it around

some axis.

Let us call the phase of active variation in angular velocity

that phase of motion during which this accelerating device operates.

Let us rigidly attach to the s tellite a system of coordi- /178

nates xyz, whose center coincides with the center of mass of the

satellite. And the axes are directed along its main central

axes of inertia. Since kinetic energy of rotation of the article

:otated around the center of mass is greater than the work of

external forces, the orbital motion of the satellite will not

differ substantially from motion in a uniform field in which the

vector l of kinetic momentum is constant. Let us introduce as-

an immobile system of coordinates the system 111213, associated

with kinetic momentum. The origin of this system coincides with

the center of mass of the objecto.cand the axis cl3 is directed

along vector T. The position of the structural system of co-

ordinates with respect to the immobile system will be defined with

the aid of the Euler angles T, 0, D. For projections of the vec-

tor 1 on axis xyz we will have

Ie')X=l sin 0 sin ',
Iyoy=1 sin Ocos d,

ose. (1)

1



Here 1 = IS2 ~;+I _2+ . 2

Projections onto the structural axes of angular velocity w

of rotation of the satellite around "the center of mass have the

form ' = sin @ sin 4+6'cosP,

my=! sin 8 cos Z--6 sin',

=WI' cose+,. I (2)

If by means of integrating the dynamic equations of Euler.

we will find the values of x, ' , Wz at the end of the phase of

active variation of velocity, the values of the angles T, O, D at

that same moment will be derived from the relationships

cos 2- Iz _ (3)

sin- y cos4 =
kdntst r -o ti d. (4)

which are derived from (1) and (2). In formula (5) h denotes

kinetic energy, i.e.,

2h=IxW2 +I y6 + Iz2,

_tk denotes the turn-on time of the accelerating device.

2. Studying the Euler Equations

In the phase of active variation in angular velocity, due

to the fact that the momentum of the accelerating device greatly

exceeds the perturbing moments, the Euler equations of rotation of
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the article around the center of mass will be written as follows:

X+ Ym = 0,

l-

fZ• ! Iy-Ix  (6)

Here Mp is the momentum of the accelerating device divided by i ./17 9

Given that I = I = I. Equations (6) acquire the form
y z

Ox= 0i=cOnst,

z --. -f -- M p . ( 7 )

The solution of linear differential equations with constant co-

efficients (7) will be derived in the form

0y=n-Mp+Di sin nt-D 2 cos nt-n-' S d cos n (t-) d,

tm=Di cos nt+D 2 sin nt+n- ddM n (t-) d.

o X
In formulas (8) the notation n = o, is adopted; D1 and

D2 are arbitrary constants of integration.

For simplicity, we can posit M = const. Formulas (8) are

written thus:

oy= n-'Mp+Dl sin nt-D 2 cos nt,

oz=Di cos nt+D 2 sin nt. (9)
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The constants of integration are easily calculated for given
0 0initial values w and . The solution of (8) has the form
y z

. dMp ( 
d

*

Oy=n-'Mp (1-cos nt)+o sin nt+o.) cos nt-n- 1  d cos n (t-c) dt,

00

a),=4 cos nt+(n-,Mp- ) sinnt+n- dr sin n (t-r) dr.

(10)

For the case of solving (9), we will have expressions (10) in

which the last terms on the right side, are equal to zero.

Formulas (8)-(10) show that w does not have a monotonous

relationship as a function of time and that momentum M turnsP
the article no only around axis cz, but also around axis cy.

The mean velocity of rotating around axis cy is defined by the

elementary formula of gyroscopic momentum:

MrHp=ln)y.

-1 ad()
Since M I  = M , we have, as in fdrmulas (8) and (9), y =

-1 gyr Y
= n M .

This examinatior shows that the equality of moments of iner-

tia I = I makes the construction of the article unsuited for
y z

operation. This same situation will occur when I > Iy z

The only working variant can be the case I < Iz. Study of

this case should be done on a computer.

Equations (6) with constant M were integrated on an M-20 /180

computer using the Runge-Kutta method, with automatic selection
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of spacing under simulated initial conditions, presented in the

following two versions:

I. Wo= IOce, c, =3o/cer, =6/ceg,
' 2. co =0,2 OlceYK, = 30/ceg, o0=30/cei.

Simulated values for M and moments of inertia of the satellite
p

were used. The results of integration show that in each of the

two versions wz increases virtually in proportion to time, at-

taining at the end of the phase of acceleration its highest value.

The quantities and have fluctuations around the zero value.
x y

Where tk ranges from 150 s to 250 s, integration requires about

3 minutes of computertime.

In predicting the rotary motion of an artificial satellite,

after defining the mentioned angular velocities, th' valuesbof

-te E dler angles of the position of the structural system of the

article with respect to the system associated with the vector of

kinetic momentum can be calculated according to simple formulas

(3), (4), (5).

Note: Calculation of a slight variation in moments of iner-

tia of the satellite, which can be induced by escape of gases,

can not essentially affect the conclusion formed above. To prove

this assertion, let us examine the case Iy = Iz = I. Given that

n = x I-(I - Ix) = n0 + Pn , where no = const, n' = n'(t) and

p --a small parameter. Equations of orbital motion of a body of

variable mass with reactive momentum having a projection along

only axis cz in the form Mp will have [1] form (6); while for

the case I = I = I--the form (7), respectively. On the basis
y z

of (7) we find that

y=n-' (Mp-- ),

(11)
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The solution of equations (11) will be sought in the form of a

series by steps p and for the purpose of this investigation we

will limit ourselves to calculation of terms on the order of P.

Let us denote'by r~ and the solution, respectively, for wy and

Wz where I= 0. The quantities n and will coincide with wy and

a of formulas (10). Let us denote corrections of the first power

by the prime.

Let us retain in equations (11) terms of the order p. After

transforming these equations with the aid of differential equa-

tions of zero approximation, we will find that

+ no,=n'~(-2non'. (12)

Equations (12) must be integrated with zero initial data. After

integration and definition of the arbitrary constants, we will

find that -
t

oa= n,;n'" (1-cos not)--no 'f ( ) cos no (t--) dit,

o;=n ln' sin not+n I f () sin n o (t- ) dr.
o

.(13)

In formula (13) the notation is adopted as follows:

-- 0*

f (T)= n' () q (-)-2non' (1 (). (14)

Let us multiply the solution of (13) by p and sum it with

the solution of zero approximation which appears as (10). After

several transformations we will derive a representation for the /181
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angular velocities accurate to within terms on the order P

in the following form:

yO =n1 (Mp+tLn') (1-cos not)+wo cos not-
t

-n [ 0-2non+pn' h'] cos no(t--) d,
. -"- i-(15)

z=(0+(n Mp-f-( + ooEno'n'- sin no +:

dM(r)
+ n-o d[  

m+n'q-- 2tnon'J sinn (t-) dc. (16
o (16)

According to the condition of the problem, the defining quantities

of the right sides of formulas (15) and (16) are w0 and , whilez
in a comparatively small interval of time of acceleration, the

quantity can exceed w0 by several times (no more than 10). For-
z

mulas (15) and (16) show that under conditions of the examined

problem, terms on the order of p do not evoke great perturbations

in the solution of zero approximation.
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